Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: DLR Site ID: 122 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Site Information

Desc. By: M. DeCorte Locality:

Date Desc.: 24/08/90 Elevation: 415 metres Map Ref.: Sheet No.: 7959 GPS Rainfall: No Data Northing/Long.: 7845140 AMG zone: 55 Runoff: Very slow 318508 Datum: AGD66 Well drained Easting/Lat.: Drainage:

Geology

ExposureType: No Data Conf. Sub. is Parent. Mat.: No Data

Geol. Ref.: No Data Substrate Material: Undisturbed soil core, Basalt

Land Form

Rel/Slope Class:Level plain <9m <1%</th>Pattern Type:PlainMorph. Type:FlatRelief:No DataElem. Type:PlainSlope Category:LevelSlope:1 %Aspect:0 degrees

Surface Soil Condition (dry): Hardsetting

Erosion:

Soil Classification

Australian Soil Classification:Mapping Unit:N/AHaplic Eutrophic Red Ferrosol Thin Non-gravelly Clay-loamyPrincipal Profile Form:Gn3.12

Clayey Deep

ASC Confidence: Great Soil Group: Euchrozem

Analytical data are incomplete but reasonable confidence.

<u>Site Disturbance:</u> No effective disturbance other than grazing by hoofed animals

Vegetation: Low Strata - Tussock grass, 0.26-0.5m, Sparse. *Species includes - Bothriochloa bladhii, Aristida species

Mid Strata - Tree, 1.01-3m, Isolated plants. *Species includes - Acacia species

Tall Strata - Tree, 6.01-12m, Very sparse. *Species includes - Eucalyptus crebra, Eucalyptus papuana

Surface Coarse Fragments: No surface coarse fragments

Profile Morphology

A1c 0 - 0.08 m Dark reddish brown (5YR3/3-Moist); ; Clay loam; Weak grade of structure, 10-20 mm, Subangular

blocky; Smooth-ped fabric; Dry; Very firm consistence; Common (10 - 20 %), Ferruginous, Coarse (6 - 20 mm), Concretions; , Calcareous, , ; , Gypseous, , ; Field pH 6.5 (Raupach, 0.05);

Many, fine (1-2mm) roots; Clear, Smooth change to -

B1 0.08 - 0.5 m Red (2.5YR4/8-Moist); ; Light clay; Moderate grade of structure, 20-50 mm, Subangular blocky;

Smooth-ped fabric; Moderately moist; Very firm consistence; Few (2 - 10 %), Ferruginous, Coarse (6 - 20 mm), Concretions; , Calcareous, ,; , Gypseous, ,; Field pH 6.3 (Raupach, 0.3);

Common, fine (1-2mm) roots; Gradual, Smooth change to -

B2 0.5 - 1.4 m Red (2.5YR4/6-Moist); ; Light medium clay; Strong grade of structure, 10-20 mm, Subangular

blocky; Smooth-ped fabric; Moderately moist; Very firm consistence; Few cutans, <10% of ped faces or walls coated, distinct; Very few (0 - 2 %), Ferruginous, Medium (2 -6 mm), Concretions; , Calcareous, , ; , Gypseous, , ; Field pH 6.3 (Raupach, 0.9); Few, very fine (0-1mm) roots; Clear,

Smooth change to -

C 1.4 - 1.45 m ; , Calcareous, , ; , Gypseous, , ; Field pH 6 (Raupach, 1.5);

Morphological Notes

Observation Notes

Site Notes

Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD DLR Site ID: 122 Observation ID: 1

DLR Site ID: 122
QLD Department of Primary Industries

Project Name: Project Code: Agency Name:

Laboratory Test Results:

1001111	ouito.										
рН	1:5 EC	Exchangeable Ca Mg		Cations K Na		Exchangeable C Acidity		CEC			ESP
	dS/m				Cmol (+)	/kg					%
6.7A 6.7A		9.9B	4.5	0.94	0.09						
7A		6.2B 6.7J	4.4 4.5	0.09 0.1	0.1 0.1		11.7	I		().85
7A											
CaCO3	Organic	Avail.	Total	Total	Total	Bulk					
%	%	mg/kg	%	%	%	Mg/m3	GV	03	%	Siit	Clay
COLE		Gravimetric/Volumetric V			later Contents			K sat		K unsat	
	Sat.	0.05 Bar		0.5 Bar g - m3/m	1 Bar 3	5 Bar 15	Bar	mm	ı/h	mm/h	
	6.7A 6.7A 7A 7A CaCO3 %	dS/m 6.7A 6.7A 7A 7A CaCO3 Organic C % COLE	PH 1:5 EC Ca Excl dS/m 9.9B 6.7A 9.9B 6.7A 6.2B 6.7J 7A CaCO3 Organic Avail. C P mg/kg COLE Grav	PH 1:5 EC Ca My dS/m 6.7A 9.9B 4.5 6.7A 6.2B 4.4 6.7J 4.5 CaCO3 Organic Avail. Total C P P P mg/kg % COLE Gravimetric/Vo Sat. 0.05 Bar 0.1 Bar Control Con	pH 1:5 EC dS/m Exchangeable Cations Mg Cations K 6.7A 6.7A 7A 9.9B 4.5 0.94 0.94 6.7A 7A 6.7B 7A 6.2B 4.4 0.09 0.1 7A 6.7J 4.5 0.1 0.1 7A W mg/kg W %	pH 1:5 EC dS/m Exchangeable Cations Mg R Na Cmol (+) 6.7A 6.7A 7A 6.2B 4.4 0.09 0.1 6.7J 4.5 0.1 0.1 7A 6.7J 4.5 0.1 0.1 CaCO3 Organic C 9 P P N K mg/kg % % % N K M K M K M M M M M M M M M M M M M M	PH	PH	PH	PH	PH

Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: DLR Site ID: 122 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Laboratory Analyses Completed for this profile

Extractable sulfur(mg/kg) - Phosphate extractable sulfur 10B 15A2_CA Exchangeable bases (Ca2+,Mg2+,Na+,K+) - 1M ammonium chloride at pH 7.0, pretreatment for soluble salts 15A2_K Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts 15A2_MG Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts 15A2_NA Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts 15F1_CA Exchangeable bases by 0.01M silver-thiourea (AgTU)+, no pretreatment for soluble salts 15F1_K Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts 15F1_MG Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts 15F1_NA Exchangeable bases by 0.01m (AgTU)+, no pretreatment for soluble salts 15F3 CEC by 0.01M silver-thiourea (AgTU)+ 15N1 Exchangeable sodium percentage (ESP)

4A1 pH of 1:5 soil/water suspension